Online Walking Speed Estimation Based on Gait Phase and Kinematic Model for Intelligent Lower-Limb Prosthesis

Author:

Liu Yi1,An Honglei1ORCID,Ma Hongxu1,Wei Qing1

Affiliation:

1. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

Intelligent lower-limb prostheses aims to make amputees walk more comfortably and symmetrically which requires the dynamic altering of gait parameters such as walking speed. Some solutions have been proposed such as direct integration and machine learning methods. The former updates walking speed once after an entire gait cycle and the latter collects large amounts of gait data which are unfriendly to lower-limb amputees. Only by using an inertial measurement unit (IMU) placed on the thigh, this paper proposes a novel online walking speed estimation method to determine the walking speed rapidly and accurately in real-time. A step frequency estimator based on the phase variable and a stride estimator based on the inverted pendulum model is designed to determine the walking speed together. The proposed method is evaluated on a public open-source dataset and the gait data were collected in the lab to verify the effectiveness for able-bodied and prosthetic wearers. The experiment results show that the walking speed estimator offers higher accuracy (RMSE of the able-bodied dataset: 0.051 ± 0.016 m/s, RMSE of the prosthetic wearers‘ dataset: 0.036 ± 0.021 m/s) than the previous works with a real-time frequency of 100 Hz. The results also show that the proposed method has good performances both in static speeds and dynamic speed tracking without much data collection before being applied.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hip-Knee Motion-Lagged Coordination Mapping Enables Speed Adaptive Walking for Powered Knee Prosthesis;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3