R-Curve Behavior of Polyhedral Oligomeric Silsesquioxane (POSS)–Epoxy Nanocomposites

Author:

Mishra Kunal1ORCID,Singh Raman P.2

Affiliation:

1. Corning Incorporated, Painted Post, NY 14870, USA

2. School of Material Science and Engineering, Oklahoma State University, Tulsa, OK 74106, USA

Abstract

Polyhedral oligomeric silsesquioxane (POSS) is a suitable nanoscale reinforcement for thermosetting polymers, such as epoxy resin systems in order to modify its mechanical, thermal and chemical properties. The inclusion of POSS in the epoxy resin at higher loading (greater than 1 wt.%); however, it introduces the ductility during the fracture behavior of these nanocomposites. Consequently, the J-integral is used to quantify the fracture behavior of these materials and characterize the crack growth resistance curve against stable crack growth. A range of nanocomposites is prepared by adding 0.5, 1, 3, 5, and 8 wt.% of glycidyl POSS into DGEBF epoxy resin cured with an amine-based curing agent. From fracture toughness experiments, the load-displacement result confirms that when the POSS reinforcement is greater than 1 wt.%, the fracture behavior of the nanocomposite changes from brittle to ductile. For both brittle and ductile nanocomposites, the addition of POSS molecules improves the crack initiation toughness. The development of POSS–POSS compliant domains, reported previously, is responsible for this change in the failure behavior. The fractured images of POSS–epoxy nanocomposites, obtained by using scanning electron microscopy, show that the increase in fracture resistance at higher values of POSS loading occurs due to the extensive shear yielding. Meanwhile, the increased fracture toughness at lower values of POSS loading occurs due to crack pinning and crack deflection.

Funder

Oklahoma Nanotechnology Applications Project

NASA Experimental Program to Stimulate Competitive Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3