Model Test Study of the Synergistic Interaction between New and Existing Components of Sheet Pile Walls

Author:

Zhao Wenhui1,Wu Xiaomin1ORCID,Ma Xuening1

Affiliation:

1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract

New and existing components of retaining structures are often combined in the width section. When combining the design and use requirements of the existing and new structures, the synergistic interactions between the existing and new structures and the design and working conditions require clarification. In conjunction with an actual project, a sheet pile wall consisting of existing and new components is proposed to retain an embankment. Indoor model tests were carried out to simulate the excavation and compaction and investigate changes in earth pressure, pile bending moment, shear force, and load-sharing ratio of the new and existing sheet pile walls at different stages. The results show that the earth pressure of the cantilever section of the existing and new piles increases with an increase in the fill volume or the upper uniform load. An inflection point is observed in the earth pressure curve halfway between the pile top and the ground due to sudden changes in the pile and soil stiffness. The bending moment of the new and existing piles increases and decreases with the distance from the top of the pile under different working conditions, and the maximum bending moment occurred at 0.485 and 0.9 m from the bottom of the existing pile and the bottom of the new pile, respectively. The lateral displacement of the new and existing piles decreases with the distance from the top of the pile. Due to the adjustment of the structural force in the cantilever section and the soil reaction force in front of the pile, the displacement curves of the new and existing piles are similar in the cantilever section. The displacement in the anchored section is initially larger for the existing pile than for the new pile but then becomes similar for both piles. In working condition 5, the top displacement of the existing pile was 6.531 mm, exceeding the control value (5.6 mm). The earth-pressure-sharing ratio of the existing pile decreases with an increase in the width of the filling material or the load. When the load was applied, the earth-pressure-sharing ratio of the existing pile was 0.451, indicating that the structural design of the combined sheet pile wall is reasonable.

Funder

the Special Funds for Guiding Local Scientific and Technological Development by The Central Government

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3