Design and Experimental Research on Centralized Lubrication and Waste Oil Recovery System for Wind Turbines

Author:

Shangguan Linjian1,Xu Yuming1

Affiliation:

1. School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China

Abstract

Lubrication plays a key role in increasing availability of wind turbines, extending unit life and reducing operating costs. In view of the problems of valve core lag, grease hardening and difficulty in removing waste oil in a centralized lubrication system, an improved centralized lubrication system and waste oil recovery system were designed in this study. Discharge of waste grease in the bearing cavity was simulated under different vacuum conditions. It was shown that vacuum degree of bearing cavity is proportional to oil output speed of waste grease. Performance and fatigue reliability tests of the waste grease suction and drainer device test platform were conducted over 12,000 fatigue cycles. The results show that the vacuum degree error of the waste grease suction and drainer device before and after the test is less than 5%, and the power oil pressure, oil output pressure and oil output quantity of the test product are stable, indicating that the designed waste grease suction and drainer device has excellent sealing and reliability. The waste grease suction and drainer device can eliminate grease discharge resistance in the bearing cavity, facilitating discharge of waste oil and improving wind turbine operation efficiency.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Wind power: Current state and perspectives;Linnik;Int. J. Energy Econ. Policy,2020

2. Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms;Wu;J. Wind. Eng. Ind. Aerodyn.,2011

3. Modern advancements in lubricating grease technology;Lugt;Tribol. Int.,2016

4. Lubrication of rolling bearings;Stockl;Ind. Technol.,2017

5. Early detection of faults and stall effects associated to wind farms;Tataje;Energy Technol.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3