EFCMF: A Multimodal Robustness Enhancement Framework for Fine-Grained Recognition

Author:

Zou Rongping123ORCID,Zhu Bin123,Chen Yi123,Xie Bo123,Shao Bin123

Affiliation:

1. College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China

2. State Key Laboratory of Pulsed Power Laser Technology, Hefei 230037, China

3. Key Laboratory of Infrared and Low Temperature Plasma of Anhui Province, Hefei 230037, China

Abstract

Fine-grained recognition has many applications in many fields and aims to identify targets from subcategories. This is a highly challenging task due to the minor differences between subcategories. Both modal missing and adversarial sample attacks are easily encountered in fine-grained recognition tasks based on multimodal data. These situations can easily lead to the model needing to be fixed. An Enhanced Framework for the Complementarity of Multimodal Features (EFCMF) is proposed in this study to solve this problem. The model’s learning of multimodal data complementarity is enhanced by randomly deactivating modal features in the constructed multimodal fine-grained recognition model. The results show that the model gains the ability to handle modal missing without additional training of the model and can achieve 91.14% and 99.31% accuracy on Birds and Flowers datasets. The average accuracy of EFCMF on the two datasets is 52.85%, which is 27.13% higher than that of Bi-modal PMA when facing four adversarial example attacks, namely FGSM, BIM, PGD and C&W. In the face of missing modal cases, the average accuracy of EFCMF is 76.33% on both datasets respectively, which is 32.63% higher than that of Bi-modal PMA. Compared with existing methods, EFCMF is robust in the face of modal missing and adversarial example attacks in multimodal fine-grained recognition tasks. The source code is available at https://github.com/RPZ97/EFCMF (accessed on 8 January 2023).

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3