Influence of Annealing on Gas-Sensing Properties of TiOx Coatings Prepared by Gas Impulse Magnetron Sputtering with Various O2 Content

Author:

Wojcieszak Damian1ORCID,Kapuścik Paulina1,Kijaszek Wojciech1

Affiliation:

1. Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372 Wroclaw, Poland

Abstract

TiOx films were prepared by gas impulse magnetron sputtering under oxygen-deficient (ODC) and oxygen-rich conditions (ORC) and annealing at 100–800 °C was used. The O2 content had an effect on their transparency level (Tλ). The films from the ORC mode had ca. Tλ = 60%, which decreased slightly in the VIS range after annealing. The film from the ODC mode had lower transmission (ca. <10%), which increased in the NIR range after annealing by up to ca. 60%. Differences in optical band gap (Egopt) and Urbach energy (Eu) were also observed. The deposition parameters had an influence on the microstructure of TiOx coatings. The ORC and ODC modes resulted in columnar and grainy structures, respectively. Directly after deposition, both coatings were amorphous according to the GIXRD results. In the case of TiOxORC films, this state was retained even after annealing, while for TiOxODC, the crystalline forms of Ti and TiO2-anatase were revealed with increasing temperature. Sensor studies have shown that the response to H2 in the coating deposited under oxygen-rich conditions was characteristic of n-type conductivity, while oxygen-deficient conditions led to a p-type response. The highest sensor responses were achieved for TiOxODC annealed at 300 °C and 400 °C.

Funder

the NAWA project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3