Soil Depth Prediction Model Using Terrain Attributes in Gangwon-do, South Korea

Author:

Kim Jinwook1,Shin Hosung1

Affiliation:

1. Department of Civil & Environmental Engineering, University of Ulsan, Ulsan 44610, Republic of Korea

Abstract

Soil depth is a crucial parameter in slope stability analysis in mountainous areas. The drilling survey is the most reliable method for determining soil depth, but it requires a high cost for the vast geographical area. Therefore, this study proposes a soil depth prediction model for mountainous areas that uses Terrain Attributes (TAs) from digital maps. Gangwon-Do, a predominantly mountainous region in South Korea, is selected as the study target area. The study area is classified by parent rock type into igneous rocks, metamorphic rocks, and sedimentary rocks. The correlation with TAs is analyzed through multi-collinearity using drilling data published in the Korea drilling information database. In addition, the most suitable combination of variables is selected through multi-collinearity analysis, and the regression model using STI, TWI, and SLOPE is found to be the most appropriate model (VIF < 10). The proposed model for soil depth shows significance at p < 0.001, and the correlation coefficient (R2) is figured out for igneous rock (0.702), metamorphic rock (0.686), and sedimentary rock (0.693). In addition, the reliability of the proposed model was verified by using data from regions not included in the model development, and the correlation coefficients were igneous rock (0.867), metamorphic rock (0.801), and sedimentary rock (0.814). The model proposed is more suitable for Korean topography than the existing statistical models; it can help to increase the accuracy of slope stability analysis.

Funder

Research Fund of University of Ulsan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3