Affiliation:
1. Department of Civil & Environmental Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
Abstract
Soil depth is a crucial parameter in slope stability analysis in mountainous areas. The drilling survey is the most reliable method for determining soil depth, but it requires a high cost for the vast geographical area. Therefore, this study proposes a soil depth prediction model for mountainous areas that uses Terrain Attributes (TAs) from digital maps. Gangwon-Do, a predominantly mountainous region in South Korea, is selected as the study target area. The study area is classified by parent rock type into igneous rocks, metamorphic rocks, and sedimentary rocks. The correlation with TAs is analyzed through multi-collinearity using drilling data published in the Korea drilling information database. In addition, the most suitable combination of variables is selected through multi-collinearity analysis, and the regression model using STI, TWI, and SLOPE is found to be the most appropriate model (VIF < 10). The proposed model for soil depth shows significance at p < 0.001, and the correlation coefficient (R2) is figured out for igneous rock (0.702), metamorphic rock (0.686), and sedimentary rock (0.693). In addition, the reliability of the proposed model was verified by using data from regions not included in the model development, and the correlation coefficients were igneous rock (0.867), metamorphic rock (0.801), and sedimentary rock (0.814). The model proposed is more suitable for Korean topography than the existing statistical models; it can help to increase the accuracy of slope stability analysis.
Funder
Research Fund of University of Ulsan
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science