Influence of Variotropy on the Change in Concrete Strength under the Impact of Wet–Dry Cycles

Author:

Beskopylny Alexey N.1ORCID,Stel’makh Sergey A.2ORCID,Shcherban’ Evgenii M.3ORCID,Mailyan Levon R.4,Meskhi Besarion5ORCID,Chernil’nik Andrei2ORCID,El’shaeva Diana2,Pogrebnyak Anastasia6ORCID

Affiliation:

1. Department of Transport Systems, Faculty of Roads and Transport Systems, Don State Technical University, 344003 Rostov-on-Don, Russia

2. Department of Unique Buildings and Constructions Engineering, Don State Technical University, 344003 Rostov-on-Don, Russia

3. Department of Engineering Geology, Bases, and Foundations, Don State Technical University, 344003 Rostov-on-Don, Russia

4. Department of Roads, Don State Technical University, 344003 Rostov-on-Don, Russia

5. Department of Life Safety and Environmental Protection, Faculty of Life Safety and Environmental Engineering, Don State Technical University, 344003 Rostov-on-Don, Russia

6. Department of Metal, Wood, and Plastic Structures, Don State Technical University, 344003 Rostov-on-Don, Russia

Abstract

One of the most dangerous types of cyclic effects, especially inherent in several regions in the world, is the alternating impact of wetting and drying on concrete and reinforced concrete structures. In the current scientific literature and practice, there is not enough fundamental and applied information about the resistance to wetting and drying of variotropic concretes obtained by centrifugal compaction methods. The purpose of the study was to investigate the effect of various technological, compositional, and other factors on the final resistance of variotropic concrete to alternating cycles of moistening and drying. For this, special methods for testing concrete samples were used in the work. It has been established that after strength gain as a result of hydration, there is a tendency for strength loss due to concrete wear. An acidic medium has the most negative effect on the strength characteristics of concretes made using various technologies, compared with neutral and alkaline media. The loss of strength of concrete when moistened in an acidic medium was greater than in alkaline and especially neutral media. The vibrocentrifuged concrete turned out to be the most resistant to the impact of an aggressive environment and the cycles of moistening and drying, compared to the centrifuged and vibrated concrete. The drop in strength was up to 7% less compared to centrifuged concrete and up to 17% less than vibrated concrete.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3