Research on Fault Diagnosis of Wind Turbine Gearbox with Snowflake Graph and Deep Learning Algorithm

Author:

Wang Meng-Hui1ORCID,Chen Fu-Hao1,Lu Shiue-Der1ORCID

Affiliation:

1. Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan

Abstract

Wind power generation is one of the important development projects for renewable energy worldwide. As wind turbines operate in harsh environments, failure of the wind turbines often occurs, thus leading to lower power generation efficiency and high maintenance cost. Earlier detection of the fault type can reduce the maintenance cost. This study proposed a hybrid recognition algorithm based on the symmetrized dot pattern (SDP) and convolutional neural network (CNN) for wind turbine gearbox fault diagnoses. In addition to a fault-free type, four fault types were discussed in this paper, including gear rustiness, broken tooth, wear, and aging. A vibration sensor was used for measurement. The original vibration signals of the gearbox were captured by a NI-9234 high-speed data acquisition card, filtered by a fast Fourier transform, and imported into the SDP to create the snowflake image features. Afterward, CNN diagnosed the gearbox fault type. There were 1500 test data in this study. A total of 200 data items for each fault type were used as training samples, and 100 data of each type were used as test samples. The test result shows that the training accuracy was 98.8%. The proposed method can diagnose the fault condition of the gearbox effectively and identify the fault type of the gearbox accurately. This is favorable for the quick maintenance of wind turbines.

Funder

the Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3