Structure-Aware Scheduling Methods for Scientific Workflows in Cloud

Author:

Albtoush Alaa1,Yunus Farizah1,Almi’ani Khaled23ORCID,Noor Noor Maizura Mohamad1

Affiliation:

1. Computer Science Department, University Malaysia Terengganu, Kuala Terengganu 21300, Terengganu, Malaysia

2. Faculty of Computer Information Science, Higher Colleges of Technology, Fujairah Women’s Campus, Fujairah P.O. Box 1626, United Arab Emirates

3. Computer Science Department, Faculty of Information Technology, Al-Hussein Bin Talal University, Ma’an 71111, Jordan

Abstract

Scientific workflows consist of numerous tasks subject to constraints on data dependency. Effective workflow scheduling is perpetually necessary to efficiently utilize the provided resources to minimize workflow execution cost and time (makespan). Accordingly, cloud computing has emerged as a promising platform for scheduling scientific workflows. In this paper, level- and hierarchy-based scheduling approaches were proposed to address the problem of scheduling scientific workflow in the cloud. In the level-based approach, tasks are partitioned into a set of isolated groups in which available virtual machines (VMs) compete to execute the groups’ tasks. Accordingly, based on a utility function, a task will be assigned to the VM that will achieve the highest utility by executing this task. The hierarchy-based approach employs a look-ahead approach, in which the partitioning of the workflow tasks is performed by considering the entire structure of the workflow, whereby the objective is to reduce the data dependency between the obtained groups. Additionally, in the hierarchy-based approach, a fair-share strategy is employed to determine the share (number of VMs) that will be assigned to each group of tasks. Dividing the available VMs based on the computational requirements of the task groups provides the hierarchy-based approach the advantage of further utilizing the VMs usage. The results show that, on average, both approaches improve the execution time and cost by 27% compared to the benchmarked algorithms.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fair-Share Methods for Scheduling Scientific Workflows in Cloud;2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3