Affiliation:
1. Department of Mathematics and Computer Science, Federal University of Health Sciences, Otukpo P.M.B. 145, Nigeria
2. Department of Mathematics and Statistics, Federal University Kashere, Gombe P.M.B. 0182, Nigeria
Abstract
Unsolicited emails, popularly referred to as spam, have remained one of the biggest threats to cybersecurity globally. More than half of the emails sent in 2021 were spam, resulting in huge financial losses. The tenacity and perpetual presence of the adversary, the spammer, has necessitated the need for improved efforts at filtering spam. This study, therefore, developed baseline models of random forest and extreme gradient boost (XGBoost) ensemble algorithms for the detection and classification of spam emails using the Enron1 dataset. The developed ensemble models were then optimized using the grid-search cross-validation technique to search the hyperparameter space for optimal hyperparameter values. The performance of the baseline (un-tuned) and the tuned models of both algorithms were evaluated and compared. The impact of hyperparameter tuning on both models was also examined. The findings of the experimental study revealed that the hyperparameter tuning improved the performance of both models when compared with the baseline models. The tuned RF and XGBoost models achieved an accuracy of 97.78% and 98.09%, a sensitivity of 98.44% and 98.84%, and an F1 score of 97.85% and 98.16%, respectively. The XGBoost model outperformed the random forest model. The developed XGBoost model is effective and efficient for spam email detection.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference38 articles.
1. Dixon, S. (2022, July 18). Global Average Daily Spam Volume 2021. Available online: https://www.statista.com/statistics/1270424/daily-spam-volume-global/.
2. FBI (2022, August 06). Federal Bureau of Investigation: Internet Crime Report 2021, Available online: https://www.ic3.gov/Media/PDF/AnnualReport/2021_IC3Report.pdf.
3. (2022, August 04). Securelist Types of Text-Based Fraud. Available online: https://securelist.com/mail-text-scam/106926/.
4. Development of a Machine Learning Model for Image-Based Email Spam Detection;Onova;FUOYE J. Eng. Technol.,2021
5. Knowledge Base Representation of Emails Using Ontology for Spam Filtering;Bindu;Adv. Intell. Syst. Comput.,2021
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献