Explore Long-Range Context Features for Speaker Verification

Author:

Li ZhuoORCID,Zhao Zhenduo,Wang Wenchao,Zhang Pengyuan,Zhao Qingwei

Abstract

Multi-scale context information, especially long-range dependency, has shown to be beneficial for speaker verification (SV) tasks. In this paper, we propose three methods to systematically explore long-range context SV feature extraction based on ResNet and analyze their complementarity. Firstly, the Hierarchical-split block (HS-block) is introduced to enlarge the receptive fields (RFs) and extract long-range context information over the feature maps of a single layer, where the multi-channel feature maps are split into multiple groups and then stacked together. Then, by analyzing the contribution of each location of the convolution kernel to SV, we find the traditional convolution with a square kernel is not effective for long-range feature extraction. Therefore, we propose cross convolution kernel (cross-conv), which replaces the original 3 × 3 convolution kernel with a 1 × 5 and 5 × 1 convolution kernel. Cross-conv further enlarges the RFs with the same FLOPs and parameters. Finally, the Depthwise Separable Self-Attention (DSSA) module uses an explicit sparse attention strategy to capture effective long-range dependencies globally in each channel. Experiments are conducted on the VoxCeleb and CnCeleb to verify the effectiveness and robustness of the proposed system. Experimental results show that the combination of HS-block, cross-conv, and DSSA module achieves better performance than any single method, which demonstrates the complementarity of these three methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3