General Analytical Method to Predict the Spatial–Temporal Distribution of Extreme Pressure in High-Speed Railway Tunnels in the Post-Train Stage

Author:

Lv Wenchao,Li Angui,Cui Haihang,Chen Li

Abstract

Long-duration aerodynamic pressure fluctuation in high-speed railway tunnels in the post-train stage causes fatigue damage to tunnel structures and facilities. It increases the risk of accidents and requires in-depth research. This complex phenomenon is caused by the superposition of multiple pressure waves generated successively when a train enters/leaves a tunnel. In this study, the spatial–temporal distribution of the pressure state (SDPS) model was developed, and general equations describing the transient pressure state distribution were given. Furthermore, a prediction method for extreme pressures in tunnels and a fast calculation program were proposed based on the SDPS model. The proposed model was verified using field measurements. Using the SDPS model, the worst conditions of pressure fluctuations in tunnels were analyzed. The results show that most of the maximum positive and negative pressures are symmetrical around the midpoint of the tunnel axis and appear alternately around it. When the train/wave velocity ratio M ≤ 0.8 and the train/tunnel length ratio ε ≤ 0.8, the dimensionless position of the maximum peak-to-peak pressure region was concentrated in the region of [0.33,0.67] in the tunnel, indicating the location of potential fatigue damage. The proposed model is helpful in building safe and sustainable transportation systems.

Funder

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3