Research on Damage Mechanism and Performance-Based Design Process of Reinforced Concrete Column Members

Author:

Wang Yukui1,Liu Zhefeng2,Guo Jia1,Zhong Dou1

Affiliation:

1. School of Civil Engineering, Hunan City University, Yiyang 413000, China

2. School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China

Abstract

In order to understand the seismic damage assessment of reinforced concrete column members, the coupling relationship between the capacity degradation and the accumulated hysteretic energy and the displacement history was considered. The energy-based damage index under the random variable amplitude loading history was proposed. On the basis of preliminary research, the corresponding relationship between the damage index and the construction member parameters and seismic parameters was established, the damage mechanism was analyzed according to the damage index, and then the performance-based design process was proposed. It was found that increase in the stirrup ratio can slow down the damage, and the slowing effect was initially fast and then slows. When the reinforcement ratio is doubled, the damage index decreased by 0.063. The longer the earthquake duration was, the more serious the damage was, and this phenomenon was more obvious when the ductility coefficient was larger. With the increase in the ductility coefficient, the damage continuously increased. Therefore, it is an effective way to decrease the damage by controlling the ductility coefficient. Among all the influencing factors, the fundamental period and seismic intensity contributed more significantly to the damage indicators. When the damage index (performance objective) was determined, the target stirrup ratio can be obtained according to the proposed performance design process, that is, this design process can be used in the performance-based design. The design method based on damage index can make up for the deficiency that the design method based on the ductility coefficient does not consider the earthquake duration.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3