A Linear Memory CTC-Based Algorithm for Text-to-Voice Alignment of Very Long Audio Recordings

Author:

Doras Guillaume1ORCID,Teytaut Yann1ORCID,Roebel Axel1ORCID

Affiliation:

1. Analysis/Synthesis Team - STMS UMR 9912, IRCAM, Sorbonne University, CNRS, French Ministry of Culture 1, Place Igor Stravinsky, 75004 Paris, France

Abstract

Synchronisation of a voice recording with the corresponding text is a common task in speech and music processing, and is used in many practical applications (automatic subtitling, audio indexing, etc.). A common approach derives a mid-level feature from the audio and finds its alignment to the text by means of maximizing a similarity measure via Dynamic Time Warping (DTW). Recently, a Connectionist Temporal Classification (CTC) approach was proposed that directly emits character probabilities and uses those to find the optimal text-to-voice alignment. While this method yields promising results, the memory complexity of the optimal alignment search remains quadratic in input lengths, limiting its application to relatively short recordings. In this work, we describe how recent improvements brought to the textbook DTW algorithm can be adapted to the CTC context to achieve linear memory complexity. We then detail our overall solution and demonstrate that it can align text to several hours of audio with a mean alignment error of 50 ms for speech, and 120 ms for singing voice, which corresponds to a median alignment error that is below 50 ms for both voice types. Finally, we evaluate its robustness to transcription errors and different languages.

Funder

French National Research Agency (Agence Nationale de la Recherche—ANR) as part of the ARS project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference68 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3