Features Engineering to Differentiate between Malware and Legitimate Software

Author:

Daeef Ammar Yahya1ORCID,Al-Naji Ali23ORCID,Nahar Ali K.4,Chahl Javaan3ORCID

Affiliation:

1. Technical Institute for Administration, Middle Technical University, Baghdad 10074, Iraq

2. Electrical Engineering Technical College, Middle Technical University, Baghdad 10022, Iraq

3. School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia

4. Electrical Engineering Department, University of Technology, Baghdad 10066, Iraq

Abstract

Malware is the primary attack vector against the modern enterprise. Therefore, it is crucial for businesses to exclude malware from their computer systems. The most responsive solution to this issue would operate in real time at the edge of the IT system using artificial intelligence. However, a lightweight solution is crucial at the edge because these options are restricted by the lack of available memory and processing power. The best contender to offer such a solution is application programming interface (API) calls. However, creating API call characteristics that offer a high malware detection rate with quick execution is a significant challenge. This work uses visualisation analysis and Jaccard similarity to uncover the hidden patterns produced by different API calls in order to accomplish this goal. This study also compared neural networks which use long sequences of API calls with shallow machine learning classifiers. Three classifiers are used: support vector machine (SVM), k-nearest neighbourhood (KNN), and random forest (RF). The benchmark data set comprises 43,876 examples of API call sequences, divided into two categories: malware and legitimate. The results showed that RF performed similarly to long short-term memory (LSTM) and deep graph convolutional neural networks (DGCNNs). They also suggest the potential for performing inference on edge devices in a real-time setting.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimodal-based abnormal behavior detection method in virtualization environment;Computers & Security;2024-08

2. Analysis And Identification of Malware Using Machine Learning with Optimized Features selections;2024 International Conference on Intelligent Systems for Cybersecurity (ISCS);2024-05-03

3. Convnext-Eesnn: An effective deep learning based malware detection in edge based IIOT;Journal of Intelligent & Fuzzy Systems;2024-04-18

4. Malware Detection and Classification with Machine Learning Algorithms;Lecture Notes in Networks and Systems;2024

5. Feature Engineering Techniques for Stegware Analysis: An Extensive Survey;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3