Evaluating the Efficacy of Common Treatments Used for Vairimorpha (Nosema) spp. Control

Author:

Prouty Cody1,Jack Cameron1ORCID,Sagili Ramesh2,Ellis James D.1ORCID

Affiliation:

1. Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA

2. Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA

Abstract

Vairimorpha (formerly Nosema) apis and V. ceranae are microsporidian pathogens that are of concern for managed honey bee colonies. Multiple treatments have been proposed to be effective in reducing the prevalence and intensity of Vairimorpha spp. infections. Here, we test the efficacy of these products in one lab-based experiment and three field experiments. In the lab experiment, we found no reductions in Vairimorpha spp. prevalence (proportion of individuals infected with Vairimorpha spp.) or intensity (number of Vairimorpha spp. spores per individual), but we did find a decrease in honey bee survival after treatment with Fumagilin-B, Honey-B-Healthy®, and Nozevit Plus. The first field experiment showed increased Vairimorpha spp. intensity in colonies treated with Fumagilin-B and HiveAlive® compared to a negative control (sucrose syrup alone). The second field experiment showed a weak reduction in Vairimorpha spp. intensity after 3 weeks post treatment with Fumagilin-B compared to Nozevit. However, Vairimorpha spp. intensity returned to levels comparable to those of other treatment groups after 5 weeks post treatment and remained similar to those of other groups for the duration of the experiment. The final field trial showed no positive or negative effects of treatment with Fumagilin-B or Nosevit on Vairimorpha spp. prevalence or intensity. These findings raise questions regarding the efficacy of the products currently being used by beekeepers to control Vairimorpha spp. We argue that the observed reduction of Vairimorpha spp. is more likely relevant to the phenology of spore prevalence and intensity in honey bee colonies than to chemical treatment.

Funder

USDA National Institute of Food and Agriculture Multistate Project

Florida State Beekeepers Association

Florida Department of Agriculture and Consumer Services

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3