Numerical Modeling Technique of Damage Behavior of MaSonry-Infilled RC Frames

Author:

Liu Bo1,Liu Chunhui1,Wang Xiaomin23,Kong Jingchang1ORCID,Chang Zhiwang4

Affiliation:

1. School of Civil Engineering, Yantai University, Yantai 264005, China

2. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China

3. Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin 150080, China

4. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract

The damage pattern of masonry-infilled reinforced concrete (RC) frame structures in earthquake events is complicated, and understanding the detailed failure behavior of these structures and modeling it accurately has been a challenging task. In this paper, the extended finite element method (XFEM) is introduced to reproduce arbitrary cracks initiating and propagating in concrete frame and masonry units, combined with interface elements to model various behaviors of masonry-infilled RC frames. Within the finite element analysis program FEAP, a user element subroutine is adopted for the incorporation of XFEM and two types of extended finite elements with and without crack tip enrichments are built to simulate the behavior of concrete material for frame members and masonry blocks for the infill panel, respectively. In addition, a macro command is created to check the crack-propagation criterion and update crack and enrichment information. Furthermore, numerical examples are performed with existing test data, which reveal the efficiency of the implementation procedure. A comparison of the analytical and experimental results show that the proposed modeling can be used to predict the crack and failure process and the load-bearing capacity curves of the structures and reflect accurately the interaction of masonry infill and RC frames.

Funder

National Nature Science Foundation of China

Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3