Fabrication of a New Air-Gap FBAR on an Organic Sacrificial Layer through an Innovative Design Algorithm

Author:

Niro GiovanniORCID,Marasco IlariaORCID,Rizzi FrancescoORCID,D’Orazio Antonella,Grande MarcoORCID,De Vittorio MassimoORCID

Abstract

Realizing thin-film acoustic wave resonators presents many design and fabrication challenges. Actual material specifications always differ from nominal material properties employed in simulations, as they depend on the deposition technique and parameters used and on equipment type and status. Moreover, each deposition process introduces a degree of uncertainty regarding the thicknesses of the layers. All these factors have a substantial impact on the resonance frequency, which often differs from the designed value. This work details the design and fabrication of an aluminum nitride (AlN)-based thin-Film Bulk Acoustic wave Resonator (FBAR) showing one of the highest products of Q-factor and electromechanical coupling of 6895. The design process is based on an innovative, fast, and scalable design and fabrication approach that considers fabrication tolerances. The algorithm returns very fast results on the order of seconds, and successfully estimates the resonance of a designed stack at 2.55 GHz with a very low error of 0.005 GHz (about 0.2%). The FBAR layer stack is suspended on a polymeric membrane and an innovative rapid dissolving sacrificial layer made of Lift-Off Resist (LOR). This new fabrication protocol obtains resonators with an electromechanical coupling factor of 4.7% and a maximum quality factor of 1467, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference19 articles.

1. Subwavelength confinement of propagating surface acoustic waves;Ash;Appl. Phys. Lett.,2021

2. Flexible and Transparent Aluminum-Nitride-Based Surface-Acoustic-Wave Device on Polymeric Polyethylene Naphthalate;Lamanna;Adv. Electron. Mater.,2019

3. The thin film bulk acoustic wave resonator based on single-crystalline 43○Y-cut lithium niobate thin films;Bai;AIP Adv.,2020

4. Hara, M., Kuypers, J.H., Abe, T., and Esashi, M. (2003, January 8–12). Aluminum nitride based thin film bulk acoustic resonator using germanium sacrificial layer etching. Proceedings of the TRANSDUCERS ′03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664), Boston, MA, USA.

5. Lakin, K., and Wang, J. (1980, January 5–7). UHF Composite Bulk Wave Resonators. Proceedings of the 1980 Ultrasonics Symposium, Boston, MA, USA.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Innovative-shaped FBARs for smart sensors;2023 IEEE Conference on Antenna Measurements and Applications (CAMA);2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3