Identification and Functional Exploration of BraGASA Genes Reveal Their Potential Roles in Drought Stress Tolerance and Sexual Reproduction in Brassica rapa L. ssp. pekinensis

Author:

Zhao Yanting1,Sun Xinjie2,Zhou Jingyuan3,Liu Lixuan4,Huang Li2ORCID,Hu Qizan1

Affiliation:

1. Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

2. College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China

3. Ziyun & Bifeng Community, Qiushi College, Zhejiang University, Hangzhou 310058, China

4. School of International Studies, Zhejiang University, Hangzhou 310058, China

Abstract

Gibberellic acid-stimulated Arabidopsis sequences (GASAs) are a subset of the gibberellin (GA)-regulated gene family and play crucial roles in various physiological processes. However, the GASA genes in Brassica rapa have not yet been documented. In this study, we identified and characterized 16 GASA genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Analysis of the conserved motifs revealed significant conservation within the activation segment of BraGASA genes. This gene family contains numerous promoter elements associated with abiotic stress tolerance, including those for abscisic acid (ABA) and methyl jasmonate (MeJA). Expression profiling revealed the presence of these genes in various tissues, including roots, stems, leaves, flowers, siliques, and callus tissues. When plants were exposed to drought stress, the expression of BraGASA3 decreased notably in drought-sensitive genotypes compared to their wild-type counterparts, highlighting the potentially crucial role of BraGASA3 in drought stress. Additionally, BraGASAs exhibited various functions in sexual reproduction dynamics. The findings contribute to the understanding of the function of BraGASAs and provide valuable insights for further exploration of the GASA gene function of the BraGASA gene in Chinese cabbage.

Funder

Key R&D Program of Zhejiang

SanNongJiuFang Science and Technology Cooperation Project of Zhejiang Province

Grand Science and Technology Special Project of Zhejiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3