Effect of Serotonin (5-Hydroxytryptamine) on Follicular Development in Porcine

Author:

Zhang Yan1,Han Yu1,Yang Rui1,Zhang Bo-Yang1,Zhao Yan-Sen1,Wang Yue-Qi1,Jiang Dao-Zhen1,Wang An-Tong1,Zhang Xue-Ming1ORCID,Tang Bo1

Affiliation:

1. State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China

Abstract

5-Hydroxytryptamine (5-HT) is an inhibitory neurotransmitter widely distributed in mammalian tissues, exerting its effects through binding to various receptors. It plays a crucial role in the proliferation of granulosa cells (GCs) and the development of follicles in female animals, however, its effect on porcine follicle development is not clear. The aim of this study is to investigate the expression of 5-HT and its receptors in various parts of the pig ovary, as well as the effect of 5-HT on porcine follicular development by using ELISA, quantitative real-time PCR (qPCR) and EdU assays. Firstly, we examined the levels of 5-HT and its receptors in porcine ovaries, follicles, and GCs. The findings revealed that the expression of different 5-HT receptors varied among follicles of different sizes. To investigate the relationship between 5-HT and its receptors, we exposed the GCs to 5-HT and found a decrease in 5-HT receptor expression compared to the control group. Subsequently, the treatment of GCs with 0.5 μM, 5 μM, and 50 μM 5-HT showed an increase in the expression of cell cycle-related genes, and EdU results indicated cell proliferation after the 0.5 μM 5-HT treatment. Additionally, the expression of genes involved in E2 synthesis was examined after the treatment of granulosa cells with 0.5 μM 5-HT. The results showed that CYP19A1 and HSP17β1 expression was decreased. These results suggest that 5-HT might affect the development of porcine follicle by promoting the proliferation of GCs and inhibiting the synthesis of estrogen. This provides a new finding for exploring the effect of 5-HT on follicular development, and lays a foundation for further research on the mechanism of 5-HT in follicles.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3