Analysis of the Mechanism of Wood Vinegar and Butyrolactone Promoting Rapeseed Growth and Improving Low-Temperature Stress Resistance Based on Transcriptome and Metabolomics

Author:

Zhu Kunmiao12,Liu Jun1,Lyu Ang1,Luo Tao2ORCID,Chen Xin1ORCID,Peng Lijun1,Hu Liyong2

Affiliation:

1. Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430072, China

2. Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

Abstract

Rapeseed is an important oil crop in the world. Wood vinegar could increase the yield and abiotic resistance of rapeseed. However, little is known about the underlying mechanisms of wood vinegar or its valid chemical components on rapeseed. In the present study, wood vinegar and butyrolactone (γ-Butyrolactone, one of the main components of wood vinegar) were applied to rapeseed at the seedling stage, and the molecular mechanisms of wood vinegar that affect rapeseed were studied by combining transcriptome and metabolomic analyses. The results show that applying wood vinegar and butyrolactone increases the biomass of rapeseed by increasing the leaf area and the number of pods per plant, and enhances the tolerance of rapeseed under low temperature by reducing membrane lipid oxidation and improving the content of chlorophyll, proline, soluble sugar, and antioxidant enzymes. Compared to the control, 681 and 700 differentially expressed genes were in the transcriptional group treated with wood vinegar and butyrolactone, respectively, and 76 and 90 differentially expressed metabolites were in the metabolic group. The combination of transcriptome and metabolomic analyses revealed the key gene-metabolic networks related to various pathways. Our research shows that after wood vinegar and butyrolactone treatment, the amino acid biosynthesis pathway of rapeseed may be involved in mediating the increase in rapeseed biomass, the proline metabolism pathway of wood vinegar treatment may be involved in mediating rapeseed’s resistance to low-temperature stress, and the sphingolipid metabolism pathway of butyrolactone treatment may be involved in mediating rapeseed’s resistance to low-temperature stress. It is suggested that the use of wood vinegar or butyrolactone are new approaches to increasing rapeseed yield and low-temperature resistance.

Funder

Key Research and Development Projects in Hubei Province

Youth Fund Project of Hubei Academy of Agricultural Sciences

Hubei Agricultural Science and Technology Innovation Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3