MicroRNA Profiling in Papillary Thyroid Cancer

Author:

Armos Richard12ORCID,Bojtor Bence1ORCID,Papp Marton3,Illyes Ildiko4,Lengyel Balazs1,Kiss Andras1,Szili Balazs1ORCID,Tobias Balint12ORCID,Balla Bernadett2,Piko Henriett1,Illes Anett1ORCID,Putz Zsuzsanna12,Kiss Andras4ORCID,Toth Erika5ORCID,Takacs Istvan1,Kosa Janos P.12,Lakatos Peter12

Affiliation:

1. Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary

2. SE HUN-REN-TKI ENDOMOLPAT Research Group, 1085 Budapest, Hungary

3. Centre for Bioinformatics, University of Veterinary Medicine, 1078 Budapest, Hungary

4. Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, 1091 Budapest, Hungary

5. Department of Surgical and Molecular Pathology, National Institute of Oncology, 1122 Budapest, Hungary

Abstract

Genetic alterations are well known to be related to the pathogenesis and prognosis of papillary thyroid carcinoma (PTC). Some miRNA expression dysregulations have previously been described in the context of cancer development including thyroid carcinoma. In our study, we performed original molecular diagnostics on tissue samples related to our own patients. We aimed to identify all dysregulated miRNAs in potential association with PTC development via sequencing much higher numbers of control-matched PTC tissue samples and analyzing a wider variety of miRNA types than previous studies. We analyzed the expression levels of 2656 different human miRNAs in the context of 236 thyroid tissue samples (118 tumor and control pairs) related to anonymized PTC cases. Also, KEGG pathway enrichment analysis and GO framework analysis were used to establish the links between miRNA dysregulation and certain biological processes, pathways of signaling, molecular functions, and cellular components. A total of 30 significant differential miRNA expressions with at least ±1 log2 fold change were found related to PTC including, e.g., miR-551b, miR-146b, miR-221, miR-222, and miR-375, among others, being highly upregulated, as well as miR-873 and miR-204 being downregulated. In addition, we identified miRNA patterns in vast databases (KEGG and GO) closely similar to that of PTC including, e.g., miRNA patterns of prostate cancer, HTLV infection, HIF-1 signaling, cellular responses to growth factor stimulus and organic substance, and negative regulation of gene expression. We also found 352 potential associations between certain miRNA expressions and states of clinicopathological variables. Our findings—supported by the largest case number of original matched-control PTC–miRNA relation research—suggest a distinct miRNA expression profile in PTC that could contribute to a deeper understanding of the underlying molecular mechanisms promoting the pathogenesis of the disease. Moreover, significant miRNA expression deviations and their signaling pathways in PTC presented in our study may serve as potential biomarkers for PTC diagnosis and prognosis or even therapeutic targets in the future.

Funder

Ministry of Innovation and Technology of Hungary

Hungarian Research Network

Hungarian National Research, Development and Innovation Office

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3