Analysis of miRNA Expression Profiles in Traumatic Brain Injury (TBI) and Their Correlation with Survival and Severity of Injury

Author:

Consalvo Francesca1,Padovano Martina2ORCID,Scopetti Matteo2ORCID,Morena Donato2ORCID,Cipolloni Luigi3ORCID,Fineschi Vittorio2ORCID,Santurro Alessandro1ORCID

Affiliation:

1. Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy

2. Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy

3. Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy

Abstract

Traumatic brain injury (TBI) is the leading cause of traumatic death worldwide and is a public health problem associated with high mortality and morbidity rates, with a significant socioeconomic burden. The diagnosis of brain injury may be difficult in some cases or may leave diagnostic doubts, especially in mild trauma with insignificant pathological brain changes or in cases where instrumental tests are negative. Therefore, in recent years, an important area of research has been directed towards the study of new biomarkers, such as micro-RNAs (miRNAs), which can assist clinicians in the diagnosis, staging, and prognostic evaluation of TBI, as well as forensic pathologists in the assessment of TBI and in the estimation of additional relevant data, such as survival time. The aim of this study is to investigate the expression profiles (down- and upregulation) of a panel of miRNAs in subjects deceased with TBI in order to assess, verify, and define the role played by non-coding RNA molecules in the different pathophysiological mechanisms of brain damage. This study also aims to correlate the detected expression profiles with survival time, defined as the time elapsed between the traumatic event and death, and with the severity of the trauma. This study was conducted on 40 cases of subjects deceased with TBI (study group) and 10 cases of subjects deceased suddenly from non-traumatic causes (control group). The study group was stratified according to the survival time and the severity of the trauma. The selection of miRNAs to be examined was based on a thorough literature review. Analyses were performed on formalin-fixed, paraffin-embedded (FFPE) brain tissue samples, with a first step of total RNA extraction and a second step of quantification of the selected miRNAs of interest. This study showed higher expression levels in cases compared to controls for miR-16, miR-21, miR-130a, and miR-155. In contrast, lower expression levels were found in cases compared to controls for miR-23a-3p. There were no statistically significant differences in the expression levels between cases and controls for miR-19a. In cases with short survival, the expression levels of miR-16-5p and miR-21-5p were significantly higher. In cases with long survival, miR-21-5p was significantly lower. The expression levels of miR-130a were significantly higher in TBI cases with short and middle survival. In relation to TBI severity, miR-16-5p and miR-21-5p expression levels were significantly higher in the critical–fatal TBI subgroup. Conclusions: This study provides evidence for the potential of the investigated miRNAs as predictive biomarkers to discriminate between TBI cases and controls. These miRNAs could improve the postmortem diagnosis of TBI and also offer the possibility to define the survival time and the severity of the trauma. The analysis of miRNAs could become a key tool in forensic investigations, providing more precise and detailed information on the nature and extent of TBI and helping to define the circumstances of death.

Publisher

MDPI AG

Reference76 articles.

1. Estimating the global incidence of traumatic brain injury;Dewan;J. Neurosurg.,2018

2. Epidemiology of Traumatic Brain Injury in Europe: A Living Systematic Review;Brazinova;J. Neurotrauma,2021

3. Epidemiology of severe traumatic brain injury;Iaccarino;J. Neurosurg. Sci.,2018

4. GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators (2019). Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 18, 56–87.

5. Ng, S.Y., and Lee, A.Y.W. (2019). Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell. Neurosci., 13.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3