CAIP-Induced ROS Production Contributes to Sustaining Atherosclerotic Process Associated with Helicobacter cinaedi Infection through Macrophages and Endothelial Cells Activation

Author:

Paolini Erika1,Cozzi Stefano2,Codolo Gaia2ORCID

Affiliation:

1. Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy

2. Department of Biology, University of Padova, 35131 Padova, Italy

Abstract

Several lines of evidence have linked the intestinal bacterium Helicobacter cinaedi with the pathogenesis of atherosclerosis, identifying the Cinaedi Antigen Inflammatory Protein (CAIP) as a key virulence factor. Oxidative stress and inflammation are crucial in sustaining the atherosclerotic process and oxidized LDL (oxLDL) uptake. Primary human macrophages and endothelial cells were pre-incubated with 10 µM diphenyl iodonium salt (DPI) and stimulated with 20 µg/mL CAIP. Lectin-like oxLDL receptor (LOX-1) expression was evaluated by FACS analysis, reactive oxygen species (ROS) production was measured using the fluorescent probe H2DCF-DA, and cytokine release was quantified by ELISA assay. Foam cells formation was assessed by Oil Red-O staining, and phosphorylation of p38 and ERK1/2 MAP kinases and NF-κB pathway activation were determined by Western blot. This study demonstrated that CAIP triggered LOX-1 over-expression and increased ROS production in both macrophages and endothelial cells. Blocking ROS abrogated LOX-1 expression and reduced LDL uptake and foam cells formation. Additionally, CAIP-mediated pro-inflammatory cytokine release was significantly affected by ROS inhibition. The signaling pathway induced by CAIP-induced oxidative stress led to p38 MAP kinase phosphorylation and NF-κB activation. These findings elucidate the mechanism of action of CAIP, which heightens oxidative stress and contributes to the atherosclerotic process in H. cinaedi-infected patients.

Funder

University of Padova

Publisher

MDPI AG

Reference46 articles.

1. Heart Disease and Stroke Statistics—2015 Update: A Report from the American Heart Association;Mozaffarian;Circulation,2015

2. The Immune System in Atherosclerosis;Hansson;Nat. Immunol.,2011

3. Inflammation and Atherosclerosis;Hansson;Annu. Rev. Pathol.,2006

4. Macrophage Differentiation to Foam Cells;Shashkin;Curr. Pharm. Des.,2005

5. Potential Infectious Etiologies of Atherosclerosis: A Multifactorial Perspective;Taylor;Emerg. Infect. Dis.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3