Computational Screening of T-Muurolol for an Alternative Antibacterial Solution against Staphylococcus aureus Infections: An In Silico Approach for Phytochemical-Based Drug Discovery

Author:

Bhattacharya Soham1ORCID,Khanra Pijush Kanti2,Dutta Adrish3,Gupta Neha3ORCID,Aliakbar Tehrani Zahra4,Severová Lucie5ORCID,Šrédl Karel5ORCID,Dvořák Marek6ORCID,Fernández-Cusimamani Eloy3ORCID

Affiliation:

1. Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 16500 Prague, Czech Republic

2. Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India

3. Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 16500 Prague, Czech Republic

4. Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic

5. Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic

6. Department of Trade and Finance, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic

Abstract

Staphylococcus aureus infections present a significant threat to the global healthcare system. The increasing resistance to existing antibiotics and their limited efficacy underscores the urgent need to identify new antibacterial agents with low toxicity to effectively combat various S. aureus infections. Hence, in this study, we have screened T-muurolol for possible interactions with several S. aureus-specific bacterial proteins to establish its potential as an alternative antibacterial agent. Based on its binding affinity and interactions with amino acids, T-muurolol was identified as a potential inhibitor of S. aureus lipase, dihydrofolate reductase, penicillin-binding protein 2a, D-Ala:D-Ala ligase, and ribosome protection proteins tetracycline resistance determinant (RPP TetM), which indicates its potentiality against S. aureus and its multi-drug-resistant strains. Also, T-muurolol exhibited good antioxidant and anti-inflammatory activity by showing strong binding interactions with flavin adenine dinucleotide (FAD)-dependent nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase, and cyclooxygenase-2. Consequently, molecular dynamics (MD) simulation and recalculating binding free energies elucidated its binding interaction stability with targeted proteins. Furthermore, quantum chemical structure analysis based on density functional theory (DFT) depicted a higher energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital (EHOMO-LUMO) with a lower chemical potential index, and moderate electrophilicity suggests its chemical hardness and stability and less polarizability and reactivity. Additionally, pharmacological parameters based on ADMET, Lipinski’s rules, and bioactivity score validated it as a promising drug candidate with high activity toward ion channel modulators, nuclear receptor ligands, and enzyme inhibitors. In conclusion, the current findings suggest T-muurolol as a promising alternative antibacterial agent that might be a potential phytochemical-based drug against S. aureus. This study also suggests further clinical research before human application.

Funder

Faculty of Economics and Management, Czech University of Life Sciences in Prague

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3