Elucidating the Role of SlBBX31 in Plant Growth and Heat-Stress Resistance in Tomato

Author:

Wang Qiqi1,Zhan Xiangqiang1ORCID

Affiliation:

1. State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China

Abstract

Heat stress inhibits plant growth and productivity. Among the main regulators, B-box zinc-finger (BBX) proteins are well-known for their contribution to plant photomorphogenesis and responses to abiotic stress. Our research pinpoints that SlBBX31, a BBX protein harboring a conserved B-box domain, serves as a suppressor of plant growth and heat tolerance in tomato (Solanum lycopersicum L.). Overexpressing (OE) SlBBX31 in tomato exhibited yellowing leaves due to notable reduction in chlorophyll content and net photosynthetic rate (Pn). Furthermore, the pollen viability of OE lines obviously decreased and fruit bearing was delayed. This not only affected the fruit setting rate and the number of plump seeds but also influenced the size of the fruit. These results indicate that SlBBX31 may be involved in the growth process of tomato, specifically in terms of photosynthesis, flowering, and the fruiting process. Conversely, under heat-stress treatment, SlBBX31 knockout (KO) plants displayed superior heat tolerance, evidenced by their improved membrane stability, heightened antioxidant enzyme activities, and reduced accumulation of reactive oxygen species (ROS). Further transcriptome analysis between OE lines and KO lines under heat stress revealed the impact of SlBBX31 on the expression of genes linked to photosynthesis, heat-stress signaling, ROS scavenging, and hormone regulation. These findings underscore the essential role of SlBBX31 in regulating tomato growth and heat-stress resistance and will provide valuable insights for improving heat-tolerant tomato varieties.

Funder

National Natural Science Foundation of China

Key Research and Development Plan of Shaanxi Province and the “100 Talents Plan” of Shaanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3