Analytical and Numerical Investigation of Star Polymers in Confined Geometries

Author:

Danel Zoriana1ORCID,Halun Joanna2,Karbowniczek Pawel1ORCID

Affiliation:

1. Faculty of Materials Engineering and Physics, Cracow University of Technology, 30-719 Cracow, Poland

2. Institute of Nuclear Physics, Polish Academy of Sciences, 30-719 Cracow, Poland

Abstract

The analysis of the impact of the star polymer topology on depletion interaction potentials, depletion forces, and monomer density profiles is carried out analytically using field theory methods and techniques as well as molecular dynamic simulations. The dimensionless depletion interaction potentials and the dimensionless depletion forces for a dilute solution of ideal star polymers with three and five legs (arms) in a Θ-solvent confined in a slit between two parallel walls with repulsive surfaces and for the case where one of the surfaces is repulsive and the other inert are obtained. Furthermore, the dimensionless layer monomer density profiles for ideal star polymers with an odd number (f˜ = 3, 5) of arms immersed in a dilute solution of big colloidal particles with different adsorbing or repelling properties in respect of polymers are calculated, bearing in mind the Derjaguin approximation. Molecular dynamic simulations of a dilute solution of star-shaped polymers in a good solvent with N = 901 (3 × 300 + 1 -star polymer with three arms) and 1501 (5 × 300 + 1 -star polymer with five arms) beads accordingly confined in a slit with different boundary conditions are performed, and the results of the monomer density profiles for the above-mentioned cases are obtained. The numerical calculation of the radius of gyration for star polymers with f˜ = 3, 5 arms and the ratio of the perpendicular to parallel components of the radius of gyration with respect to the wall orientation for the above-mentioned cases is performed. The obtained analytical and numerical results for star polymers with an odd number (f˜ = 3, 5) of arms are compared with our previous results for linear polymers in confined geometries. The acquired results show that a dilute solution of star polymer chains can be applied in the production of new functional materials, because the behavior of these solutions is strictly correlated with the topology of polymers and also with the nature and geometry of confined surfaces. The above-mentioned properties can find extensive practical application in materials engineering, as well as in biotechnology and medicine for drug and gene transmission.

Funder

Cracow University of Technology

International Phd Programme atthe Institute of Nuclear Physics, Polish Academy of Science

Publisher

MDPI AG

Reference51 articles.

1. Star polymers;Ren;Chem. Rev.,2016

2. Star polymers: Experiment, theory, and simulation;Grest;Adv. Chem. Phys.,1996

3. von Feber, C., and Holovatch, Y. (2002). Special Issue “Star Polymer”. Condens. Matter Phys., 5.

4. Statistical mechanics of polymer networks of any topology;Duplantier;J. Stat. Phys.,1989

5. Renormalization of polymer networks and stars;Lehr;Nucl. Phys. B,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3