Isopropyl 3-(3,4-Dihydroxyphenyl)-2-hydroxypropanoate Alleviates Palmitic Acid-Induced Vascular Aging in HUVEC Cells through ROS/Ferroptosis Pathway

Author:

He Xin123,Zheng Xiaohui4,Xie Weidong1ORCID

Affiliation:

1. State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

2. Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

3. Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China

4. School of Life Sciences, Northwestern University, Xi’an 710069, China

Abstract

Vascular aging is an important factor leading to cardiovascular diseases such as hypertension and atherosclerosis. Hyperlipidemia or fat accumulation may play an important role in vascular aging and cardiovascular disease. Isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate (IDHP) has biological activity and can exert cardiovascular protection, which may be related to ferroptosis. However, the exact mechanism remains undefined. We hypothesized that IDHP may have a protective effect on blood vessels by regulating vascular aging caused by hyperlipidemia or vascular wall fat accumulation. The aim of this study is to investigate the protective effect and mechanism of IDHP on palmitic acid-induced human umbilical vein endothelial cells (HUVEC) based on senescence and ferroptosis. We found that IDHP could delay vascular aging, reduce the degree of ferrous ion accumulation and lipid peroxidation, and protect vascular cells from injury. These effects may be achieved by attenuating excessive reactive oxygen species (ROS) and ferroptosis signaling pathways generated in vascular endothelial cells. In short, our study identified IDHP as one of the antioxidant agents to slow down lipotoxicity-induced vascular senescence through the ROS/ferroptosis pathway. IDHP has new medicinal value and provides a new therapeutic idea for delaying vascular aging in patients with dyslipidemia.

Funder

National Key R&D Program of China

Sustainable Development Special Project of Shenzhen Science and Technology Innovation Committee

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3