A New Strategy for Ultrasensitive Detection Based on Target microRNA-Triggered Rolling Circle Amplification in the Early Diagnosis of Alzheimer’s Disease

Author:

Zhao Fei12ORCID,Zhang Na1,Zhang Yi1

Affiliation:

1. Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China

2. Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China

Abstract

There is an urgent need to accurately quantify microRNA (miRNA)-based Alzheimer’s disease (AD) biomarkers, which have emerged as promising diagnostic biomarkers. In this study, we present a rapid and universal approach to establishing a target miRNA-triggered rolling circle amplification (RCA) detection strategy, which achieves ultrasensitive detection of several targets, including miR-let7a-5p, miR-34a-5p, miR-206-3p, miR-9-5p, miR-132-3p, miR-146a-5p, and miR-21-5p. Herein, the padlock probe contains three repeated signal strand binding regions and a target miRNA-specific region. The target miRNA-specific region captures miRNA, and then the padlock probe is circularized with the addition of T4 DNA ligase. Subsequently, an RCA reaction is triggered, and RCA products containing multiple signal strand binding regions are generated to trap abundant fluorescein-labeled signal strands. The addition of exonuclease III (Exo III) causes signal strand digestion and leads to RCA product recycling and liberation of fluorescein. Ultimately, graphene oxide (GO) does not absorb the liberated fluorescein because of poor mutual interaction. This method exhibited high specificity, sensitivity, repeatability, and stability toward let-7a, with a detection limit of 19.35 fM and a linear range of 50 fM to 5 nM. Moreover, it showed excellent applicability for recovering miRNAs in normal human serum. Our strategy was applied to detect miRNAs in the plasma of APP/PS1 mice, demonstrating its potential in the diagnosis of miRNA-associated disease and biochemical research.

Funder

National Natural Science Foundation of China

Tianjin Key Laboratory of Brain Science and Neural Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3