Optimal Scheduling of a Cascade Hydropower Energy Storage System for Solar and Wind Energy Accommodation

Author:

Liu Yuanyuan1,Zhang Hao12,Guo Pengcheng12ORCID,Li Chenxi2,Wu Shuai2

Affiliation:

1. School of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, China

2. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China

Abstract

The massive grid integration of renewable energy necessitates frequent and rapid response of hydropower output, which has brought enormous challenges to the hydropower operation and new opportunities for hydropower development. To investigate feasible solutions for complementary systems to cope with the energy transition in the context of the constantly changing role of the hydropower plant and the rapid evolution of wind and solar power, the short-term coordinated scheduling model is developed for the wind–solar–hydro hybrid pumped storage (WSHPS) system with peak shaving operation. The effects of different reservoir inflow conditions, different wind and solar power forecast output, and installed capacity of pumping station on the performance of WSHPS system are analyzed. The results show that compared with the wind–solar–hydro hybrid (WSH) system, the total power generation of the WSHPS system in the dry, normal, and wet year increased by 10.69%, 11.40%, and 11.27% respectively. The solar curtailment decreased by 68.97%, 61.61%, and 48.43%, respectively, and the wind curtailment decreased by 76.14%, 58.48%, and 50.91%, respectively. The high proportion of wind and solar energy connected to the grid in summer leads to large net load fluctuations and serious energy curtailment. The increase in the installed capacity of the pumping station will promote the consumption of wind and solar energy in the WSHPS system. The model proposed in this paper can improve the operational flexibility of hydropower station and promote the consumption of wind and solar energy, which provides a reference for the research of cascade hydropower energy storage system.

Funder

National Natural Science Foundation of China

Fellowship of China National Postdoctoral Program

Youth Innovation Team of Shaanxi Universities

Innovation Capability Support Program of Shaanxi

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3