Determination of the Possibilities of Using Woody Biomass Ash from Thermal Power Plants in Corn Cultivation

Author:

Rolka Elżbieta1ORCID,Żołnowski Andrzej Cezary1ORCID,Wyszkowski Mirosław1ORCID,Skorwider-Namiotko Anna1

Affiliation:

1. Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Łódzki 4 Sq., 10-727 Olsztyn, Poland

Abstract

Combustion of woody biomass in professional bioheating plants to generate heat and reduce the dust emissions from this process results in the formation of a huge mass of woody biomass ash (WBA). Due to WBA’s rich chemical composition and the assumptions of the circular economy, this mineral material should be used for environmental purposes to recover valuable macro- and micronutrients. The basis of the research was a pot experiment designed to assess the effect of six doses of WBA (15, 30, 45, 60, 75, and 90 g pot−1) on the growth, development, yield, and chemical composition of corn. Each pot contained 9 kg of soil. Observations show that the use of increasing doses of WBA had a positive effect on the height of corn plants, increasing its yield by 7 to 10% but reducing the dry matter content by 0.47 to 1.37% and the leaf greenness index (SPAD). Moreover, WBA application (T1–T5 treatments) had a positive effect on the content of macroelements (N, K, Mg, Ca, and Na) in corn biomass. A significant increase in the content of K (54%), Mg (38%), Ca (43%), and Na (19%) was observed. However, at the same time, a significant increase in the content of heavy metals—Ni, Cd, and Pb—was observed. Different results were obtained for P, Zn, Cu, Cr, and Co, whose content in corn decreased after WBA application to soil. The obtained results indicate the possibility of using WBA in an environmentally friendly way. However, due to the great diversity of this material in terms of the content of undesirable heavy metals, it is necessary to optimize its dosage and monitor its chemical composition. Considering the growing number of bioheating plants in our country in recent years and the resulting increase in the amount of WBA produced, it is necessary to develop a rational and environmentally friendly method for managing them in the future. The results of our research may provide partial indications of such solutions.

Funder

Minister of Science under “the Regional Initiative of Excellence Program”

Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3