Well Logging Reconstruction Based on a Temporal Convolutional Network and Bidirectional Gated Recurrent Unit Network with Attention Mechanism Optimized by Improved Sand Cat Swarm Optimization

Author:

Wang Guanqun1,Teng Haibo2,Qiao Lei1,Yu Hongtao2,Cui You1,Xiao Kun3

Affiliation:

1. Hebei Instrument & Meter Engineering Technology Research Center, Hebei Petroleum University of Technology, Chengde 067000, China

2. Department of Computer and Information Engineering, Hebei Petroleum University of Technology, Chengde 067000, China

3. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China

Abstract

Geophysical logging plays a very important role in reservoir evaluation. In the actual production process, some logging data are often missing due to well wall collapse and instrument failure. Therefore, this paper proposes a logging reconstruction method based on improved sand cat swarm optimization (ISCSO) and a temporal convolutional network (TCN) and bidirectional gated recurrent unit network with attention mechanism (BiGRU-AM). The ISCSO-TCN-BiGRU-AM can process both past and future states efficiently, thereby extracting valuable deterioration information from logging data. Firstly, the sand cat swarm optimization (SCSO) improved by the variable spiral strategy and sparrow warning mechanism is introduced. Secondly, the ISCSO’s performance is evaluated using the CEC–2022 functions and the Wilcoxon test, and the findings demonstrate that the ISCSO outperforms the rival algorithms. Finally, the logging reconstruction method based on the ISCSO-TCN-BiGRU-AM is obtained. The results are compared with the competing models, including the back propagation neural network (BPNN), GRU, and BiGRU-AM. The results show that the ISCSO-TCN-BiGRU-AM has the best performance, which verifies its high accuracy and feasibility for the missing logging reconstruction.

Funder

State Key Laboratory of Nuclear Resources and Environment Joint Innovation Fund

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3