The Evaluation of Outdoor Thermal Sensation and Outdoor Energy Efficiency of a Commercial Pedestrianized Zone

Author:

Ma Xuan,Fukuda Hiroatsu,Zhou Dian,Wang Mengying

Abstract

The growth of the scale of cities intensifies urban heat island (UHI) by obstructing the wind and building more radiation at pedestrian level, thus leading to an energy consumption. Commercial pedestrianized-zones cannot only become symbols of cities but also an important factor increasing local economic income. This study conducts on-site measurement and numerical simulation to evaluate the cooling energy efficiency of different parameters (building, vegetation, pavement material) in Fo Shan city, which locates in hot-summer and warm-winter climate region of China. Also, calculations are done to evaluate the index physiological equivalent temperature (PET) for understanding thermal sensation at a pedestrian level (1.5 m). To evaluate different impacts of this zone renewal on the environment and choose the most energy-saving method, it is easy for us to utilize the linear regression for understanding the relationship between coverage ratio of trees (TCR) and thermal comfort in canyon space, which shows that ∆PET = 0.1703 × TCR + 0.2444 with a most important R2 value of 0.9836, for TCR increases from 12.5% to 22%. In open space, also increasing coverage ratio of trees (TCR) can effectively improve humans’ thermal comfort, which shows that ∆PET = 0.2644 × TCR + 0.3955 with a most important R2 value of 0.8892.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference54 articles.

1. Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network;Rosenzweig,2011

2. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment

3. Impact of street canyon typology on building’s peak cooling energy demand: A parametric analysis using orthogonal experiment

4. Thermal Design Code for Civil Buildings, GB 50176–51993https://zhidao.baidu.com/question/492628757.html

5. The Commercial Building Design Specificationhttps://wenku.baidu.com/view/4c4a9df76529647d272852bb.html

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3