Abstract
Waste heat is a potential source for powering our living environment. It can be harvested and transformed into electricity. Ohmic heat is a common type of waste heat. However, waste heat has the following limitations: wide distribution, insufficient temperature difference (ΔT < 70 K) for triggering turbines, and producing voltage below the open voltage of the battery. This paper proposes an energy harvester model that combines a gamma-type Stirling engine and variable capacitance. The energy harvester model is different from Tavakolpour-Saleh’s free-piston-type engine [7.1 W at ΔT = 407 K (273–680 K)]. The gamma-type Stirling engine is a low-temperature-difference engine. It can be triggered by a minimum ΔT value of 12 K (293–305 K). The triggering force in the variable capacitance is almost zero. Furthermore, the gamma-type Stirling engine is suitable for harvesting waste heat at room temperature. This study indicates that 21 mW of energy can be produced at ΔT = 30 K (293–323 K) for a bias voltage of 70 V and volume of 103.25 cc. Because of the given bias voltage, the energy harvester can break through the open voltage of the battery to achieve energy storage at a low temperature difference.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献