Multi-Agent Recommendation System for Electrical Energy Optimization and Cost Saving in Smart Homes

Author:

Jiménez-Bravo Diego,Pérez-Marcos Javier,De la Iglesia Daniel,Villarrubia González Gabriel,De Paz JuanORCID

Abstract

The European Union Establishes that for the next few years, a cleaner and more efficient energy system should be used. In order to achieve this, this work proposes an energy optimization method that facilitates the achievement of these objectives. Existing technologies allow us to create a system that optimizes the use of energy in homes and offers some type of benefit to its residents. Specifically, this study has developed a recommendation system based on a multiagent system that allows to obtain consumption data from electronic devices in a home, obtain information on electricity prices from the Internet, and provide recommendations based on consumption patterns of users and electricity prices. In this way, the system recommends new hours in which to use the appliances, offering the economic benefit that it would propose recommendations for the user. In this way, it is possible to distribute and optimize the use of energy in homes and reduce the peaks in electricity consumption. The system provides encouraging results in order to resolve the problem proposed by the European Union by optimizing the use of energy among different hours of the day and saving money for the customer.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference31 articles.

1. On the Bayesian optimization and robustness of event detection methods in NILM

2. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency (Text with EEA Relevance)https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2018.156.01.0075.01.ENG

3. Occupancy based household energy disaggregation using ultra wideband radar and electrical signature profiles

4. Day-ahead prediction of hourly electric demand in non-stationary operated commercial buildings: A clustering-based hybrid approach

5. Occupancy-aided energy disaggregation

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3