Optimization of Nickel-Based Catalyst Composition and Reaction Conditions for the Prevention of Carbon Deposition in Toluene Reforming

Author:

Park No-Kuk,Lee Young,Kwon Byung,Lee Tae,Kang Suk,Hong Bum,Kim Taejin

Abstract

In this study, nickel-based reforming catalysts were synthesized for the reforming of toluene, a major component of thinners and widely used as an organic solvent. The reaction characteristics of these catalysts were investigated by both steam reforming and auto-thermal reforming. Reforming aromatic hydrocarbons like toluene to produce synthesis gas is difficult because carbon deposition also occurs, and the deposition of carbon lowers the activity of the catalyst and causes a pressure drop during the reaction process. In order to maintain a stable reforming process, a catalytic reaction technique capable of suppressing carbon deposition is required. Steam reforming and auto-thermal reforming of toluene were used in this study, and the temperature of the catalyst bed was remarkably reduced, due to a strong endothermic reaction during the reforming process. By using scanning electric microscopy (SEM), X-ray diffraction (XRD), and temperature-programmed oxidation analysis, it is shown that carbon deposition was markedly generated due to a catalyst bed temperature decrease. In this study, optimum conditions for catalyst composition and the reforming reaction are proposed to suppress the formation of carbon on the catalyst surface, and to remove the generated carbon from the process. In addition, ceria and zirconia were added as catalytic promoters to inhibit carbon deposition on the catalyst surface, and the carbon deposition phenomena according to the catalyst’s promoter content were investigated. The results showed that the carbon deposition inhibition function of CeO2, via its redox properties, is insignificant in steam reforming, but is notably effective in the auto-thermal reforming of toluene.

Funder

Yeungnam University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3