Experimental Investigation on Crack Development Characteristics in Shallow Coal Seam Mining in China

Author:

Huang Qingxiang,He YanpengORCID,Cao Jian

Abstract

The development of cracks in mining is the scientific basis for the safety and environmental exploitation of shallow multiple-seam. According to the “thickness of coal seam, interactive distance, and buried depth,” four mining coal mines are selected in Shen Fu-Dong Sheng coalfield (SFDSC). To research the mining conditions of shallow coal seam under different base-load ratio mining conditions and different working faces by the physics simulation and in-sit measurement, the key roof caves are sketched by different colors. This study shows that the typical shallow coal seams in the thin overlying bedrock and thick loose sand layer (LSL) as well as the development of the setup entry cracks (SEC) is dominated by LSL arch damage. The surface cracks are almost directly above the setup entry. The flat seam mining and the SEC development is dominated by parabolic type. The surface cracks are located inside the setup entry. With the mining height increased typically in a shallow coal seam, the rate of crack development and the extent of damaged area increased significantly. The SEC and boundary cracks are fixed. The dynamic periodic cracks (DPC) show the ability of the strata to self-repair. During the multiple-seam mining, the above three kinds of cracks have the phenomenon of activation and development. Through the reasonable coal pillar distance arrangement, the development of boundary cracks can be effectively controlled and the relatively uniform surface settlement and crack closure can be achieved. The purpose of reducing damage mining can also be achieved. Furthermore, it provides scientific support for the green mining in the shallow coal seam.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference25 articles.

1. Study on Roof Structure and Ground Control in Shallow Seam Longwall Mining;Huang,2000

2. The Key Technology of Water Conservation Mining in Fragile Ecologically Mining Coal Resources;Wang,2010

3. On Scientized Mining;Qian;J. Min. Saf. Eng.,2008

4. Further on the sustainable mining of coal;Qian;J. China Coal Soc.,2018

5. Study on dynamic load distribution on key roof blocks of under thick sandy soil stratum;Huang;Chin. J. Rock Mech. Eng.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3