Application of Miller Cycle and Net-Zero Fuel(s) to Diesel Engine: Effect on the Performance and NOx Emissions of a Single-Cylinder Engine

Author:

Yang Motong1,Wang Yaodong1ORCID

Affiliation:

1. Department of Engineering, Durham University, Durham DH1 3LE, UK

Abstract

Diesel engines play a very significant role in the automotive industry, but the total emissions of diesel engines are more than 1.8 times that of petrol engines. It is therefore important for diesel engines to control emissions. Theoretically, the Miller cycle can be used to achieve NOx reductions by changing the effective compression ratio, while it has become increasingly popular in recent years with the increasing maturity of current turbocharging technology. Based on Ricardo WAVE software, this paper analyses the NOx emissions and engine performance of diesel engines by modelling and simulating their operation under different loads with two types of Miller cycles (EIVC and LIVC) at different degrees. Simulation of engines operating under different loads allows a more comprehensive study of the effects of the Miller cycle on the engine, and a specific analysis in the context of the actual engine operating environment. The result is that both versions of the Miller cycle are most effective in reducing NOx emissions at 10% load, showing a maximum reduction of 21% for EIVC and 37% for LIVC. However, as the Miller cycle decreases engine power, the paper further investigates the application of turbocharger systems in the EIVC Miller cycle, with results showing a 32% increase in brake power at 10% load and −25% EIVC Miller cycle degree. Both ethanol-fueled diesel-cycle and Miller cycle engines were also analyzed, and a reduction in NOx emissions was observed, as well as hydrogen engine performance and NOx emissions.

Funder

EPSRC

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference43 articles.

1. Wang, Y. (2013). Study of reducing nitride oxide emission from diesel engines. Guangxi Mach., 24–26.

2. Zhu, C. (2016). Miller Cycle Performance Simulation of a Diesel Engine Based on Two-Stage Supercharging. [Ph.D. Dissertation, Southwest Jiaotong University].

3. Yang, F. (2020). Research on the Influence of Miller Cycle on the High Strength Diesel Engine Performance. [Master’s Thesis, Taiyuan University of Technology].

4. Hu, Y., Ni, J., Shi, X., and Guan, Z. (2020). CFD simulation analysis of diesel engine combustion based on miller cycle. Veh. Engine, 31–37.

5. Experimental investigation of applying miller cycle to reduce NOx emission from diesel engine;Wang;Proc. Inst. Mech. Eng. Part A J. Power Energy,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3