Deep Neural Network for Predicting Changing Market Demands in the Energy Sector for a Sustainable Economy

Author:

Wen Mingming12,Zhou Changshi1,Konstantin Mamonov3

Affiliation:

1. School of Management, Guangdong Ocean University, Zhanjiang 524088, China

2. Guangdong Coastal Economic Belt Development Research Institute, Zhanjiang 524088, China

3. Institute of Construction and Civil Engineering, O. M. Beketov National University of Urban Economy in Kharkiv, 17, Marshala Bazhanova St., 1002 Kharkiv, Ukraine

Abstract

Increasing access to power, enhancing clean cooking fuels, decreasing wasteful energy subsidies, and limiting fatal air pollution are just a few of the sustainable development goals that all revolve around energy (E). Energy-specific sustainable development objectives were a turning point in the global shift towards a more sustainable and just system. By understanding energy resources, markets, regulations, and scientific studies, the country can progress more quickly towards a sustainable economy (SE). Investment in renewable energy industries is hampered by institutional obstacles such as market-controlled procedures and inconsistent supporting policies. Power plant building is currently incompatible with existing transmission and distribution networks, posing significant risks to investors. Deep neural networks (DNN) are specifically investigated in this article for energy demand forecasting at the individual building level. Other relevant information is supplied into fully connected layers along with the convolutional output. A single customer’s power usage data were used and analyzed for the final fuel and electricity consumption by various energy sources and consumer groups to test the DNN-SE technique. The energy intensity and labor productivity indexes for several economic sectors are displayed. A wide range of economic activities are examined to determine their impact on environmental pollution indicators, greenhouse gas emissions, and other air pollutants. A more effective and comprehensive energy efficiency strategy should be implemented to lower emission levels at lower prices. Research-based conclusions must be enhanced to help policymaking. The results of the experiment using the proposed method show that it is possible to predict 98.1%, grow at 96.8%, meet 98.5% of electricity demand, use 97.6% of power, and have a renewable energy ratio of 96.2%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3