Federated-Learning-Based Energy-Efficient Load Balancing for UAV-Enabled MEC System in Vehicular Networks

Author:

Shin Ayoung1ORCID,Lim Yujin1ORCID

Affiliation:

1. Department of IT Engineering, Sookmyung Women’s University, Seoul 04310, Republic of Korea

Abstract

At present, with the intelligence that has been achieved in computer and communication technologies, vehicles can provide many convenient functions to users. However, it is difficult for a vehicle to deal with computationally intensive and latency-sensitive tasks occurring in the vehicle environment by itself. To this end, mobile edge computing (MEC) services have emerged. However, MEC servers (MECSs), which are fixed on the ground, cannot flexibly respond to temporal dynamics where tasks are temporarily increasing, such as commuting time. Therefore, research has examined the provision of edge services using additional unmanned aerial vehicles (UAV) with mobility. Since these UAVs have limited energy and computing power, it is more important to optimize energy efficiency through load balancing than it is for ground MEC servers (MECSs). Moreover, if only certain servers run out of energy, the service coverage of a MEC server (MECS) may be limited. Therefore, all UAV MEC servers (UAV MECSs) need to use energy evenly. Further, in a high-mobility vehicle environment, it is necessary to have effective task migration because the UAV MECS that provides services to the vehicle changes rapidly. Therefore, in this paper, a federated deep Q-network (DQN)-based task migration strategy that considers the load deviation and energy deviation among UAV MECSs is proposed. DQN is used to create a local model for migration optimization for each of the UAV MECSs, and federated learning creates a more effective global model based on the fact that it has common spatial features between adjacent regions. To evaluate the performance of the proposed strategy, the performance is analyzed in terms of delay constraint satisfaction, load deviation, and energy deviation.

Funder

MSIT (Ministry of Science and ICT), Korea

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Federated Learning Survey: A Multi-Level Taxonomy of Aggregation Techniques, Experimental Insights, and Future Frontiers;ACM Transactions on Intelligent Systems and Technology;2024-07-17

2. Towards Green AI: Current Status and Future Research;2024 Electronics Goes Green 2024+ (EGG);2024-06-18

3. Energy-Aware Microservice-Based Application Deployment in UAV-Based Networks for Rural Scenarios;Journal of Network and Systems Management;2024-05-31

4. Efficient Load Balancing Algorithms for Edge Computing in IoT Environments;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

5. Load Balancing for Energy Harvesting Mobile Edge Computing;Signals and Communication Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3