Integration of Stand-Alone Controlled Active Power Filters in Harmonic Power Flow of Radial Distribution Networks

Author:

Rezapour Hamed12,Amini MohamadAli1,Falaghi Hamid2,Lopes António M.3ORCID

Affiliation:

1. Electrical Engineering Department, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran

2. Faculty of Electrical and Computer Engineering, University of Birjand, Birjand 97174-34765, Iran

3. LAETA/INEGI, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal

Abstract

Utilization of active power filters (APFs) is the most efficient method to reduce harmonic pollution in distribution networks. Previous approaches utilized APFs in integrated control schemes based on broad data-gathering systems. Since a broad data-gathering system is not available in most practical distribution networks, previously proposed approaches may not readily be implemented. This paper presents the utilization of stand-alone controlled APFs (SACAPFs) in radial distribution networks. Utilizing APFs with a stand-alone control system decreases implementation costs and complexity by making them autonomous and independent of integrated control systems, which are complicated and expensive in practical applications. In this paper, a single SACAPF is modeled as a dependent current source where its injection current is equal in amplitude but opposite in phase compared to the harmonic content of the current passing through the point of common coupling (reference current). Due to the presence of both linear and nonlinear loads in the distribution network, the reference current changes after injection by SACAPF, so it is necessary to modify the injection current until reaching a constant value in the reference current. This is considered via an iterative procedure in the modeling scheme. Operation of multiple SACAPFs is handled using a backward procedure based on a priority list. Simulation results on an IEEE 18-bus test system show the proper operation of the stand-alone control systems for both single and multiple SACAPF implementation. Furthermore, optimal allocation of the proposed SACAPFs is performed in an IEEE 33-bus test network and a 9-bus test network, and the results are discussed and compared with the allocation of integrated control system APFs.

Funder

INEGI-LAETA

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3