HIV-1 Proviral Genome Engineering with CRISPR-Cas9 for Mechanistic Studies

Author:

Hyder Usman1ORCID,Shukla Ashutosh1,Challa Ashwini1,D’Orso Iván1ORCID

Affiliation:

1. Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

Abstract

HIV-1 latency remains a barrier to a functional cure because of the ability of virtually silent yet inducible proviruses within reservoir cells to transcriptionally reactivate upon cell stimulation. HIV-1 reactivation occurs through the sequential action of host transcription factors (TFs) during the “host phase” and the viral TF Tat during the “viral phase”, which together facilitate the positive feedback loop required for exponential transcription, replication, and pathogenesis. The sequential action of these TFs poses a challenge to precisely delineate the contributions of the host and viral phases of the transcriptional program to guide future mechanistic and therapeutic studies. To address this limitation, we devised a genome engineering approach to mutate tat and create a genetically matched pair of Jurkat T cell clones harboring HIV-1 at the same integration site with and without Tat expression. By comparing the transcriptional profile of both clones, the transition point between the host and viral phases was defined, providing a system that enables the temporal mechanistic interrogation of HIV-1 transcription prior to and after Tat synthesis. Importantly, this CRISPR method is broadly applicable to knockout individual viral proteins or genomic regulatory elements to delineate their contributions to various aspects of the viral life cycle and ultimately may facilitate therapeutic approaches in our race towards achieving a functional cure.

Funder

NIAID

NCI

UTSW Simmons Comprehensive Cancer Center

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3