Efficient Channel Estimation in OFDM Systems Using a Fast Super-Resolution CNN Model

Author:

Khichar Sunita1ORCID,Santipach Wiroonsak2ORCID,Wuttisittikulkij Lunchakorn1,Parnianifard Amir3ORCID,Chaudhary Sushank4ORCID

Affiliation:

1. Wireless Communication Ecosystem Research Unit, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

2. Department of Electrical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand

3. Glasgow College, University of Electronic Science and Technology of China, Chengdu 611731, China

4. School of Computer, Guangdong University of Petrochemical Technology, Maoming 525000, China

Abstract

Channel estimation is a critical component in orthogonal frequency division multiplexing (OFDM) systems for ensuring reliable wireless communication. In this study, we propose a fast super-resolution convolutional neural network (FSRCNN) model for channel estimation, designed to reduce computational complexity while maintaining high estimation accuracy. The proposed FSRCNN model incorporates modifications such as replacing linear interpolation with zero padding and leveraging a new fast CNN architecture to estimate channel coefficients. Our numerical experiments and simulations demonstrate that the FSRCNN model significantly outperforms traditional methods, such as least square (LS) and linear minimum mean square error (LMMSE), in terms of mean square error (MSE) across various signal-to-noise ratios (SNRs). Specifically, the FSRCNN model achieves MSE values comparable to MMSE estimation, particularly at higher SNRs, while maintaining lower computational complexity. At an SNR of 20 dB, the FSRCNN model shows a notable improvement in MSE performance compared to the ChannelNet and LS methods. The proposed model also demonstrates robust performance across different SNR levels, with optimal results observed when the training SNR is close to the operating SNR. These findings validate the effectiveness of the FSRCNN model in providing a low-complexity, high-accuracy alternative for channel estimation, making it suitable for real-time applications and devices with limited computational resources. This advancement holds significant promise for enhancing the reliability and efficiency of current and future wireless communication networks.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3