Underwater Localization via Wideband Direction-of-Arrival Estimation Using Acoustic Arrays of Arbitrary Shape

Author:

Dubrovinskaya ElizavetaORCID,Kebkal Veronika,Kebkal Oleksiy,Kebkal KonstantinORCID,Casari PaoloORCID

Abstract

Underwater sensing and remote telemetry tasks necessitate the accurate geo-location of sensor data series, which often requires underwater acoustic arrays. These are ensembles of hydrophones that can be jointly operated in order to, e.g., direct acoustic energy towards a given direction, or to estimate the direction of arrival of a desired signal. When the available equipment does not provide the required level of accuracy, it may be convenient to merge multiple transceivers into a larger acoustic array, in order to achieve better processing performance. In this paper, we name such a structure an “array of opportunity” to signify the often inevitable sub-optimality of the resulting array design, e.g., a distance between nearest array elements larger than half the shortest acoustic wavelength that the array would receive. The most immediate consequence is that arrays of opportunity may be affected by spatial ambiguity, and may require additional processing to avoid large errors in wideband direction of arrival (DoA) estimation, especially as opposed to narrowband processing. We consider the design of practical algorithms to achieve accurate detections, DoA estimates, and position estimates using wideband arrays of opportunity. For this purpose, we rely jointly on DoA and rough multilateration estimates to eliminate spatial ambiguities arising from the array layout. By means of emulations that realistically reproduce underwater noise and acoustic clutter, we show that our algorithm yields accurate DoA and location estimates, and in some cases it allows arrays of opportunity to outperform properly designed arrays. For example, at a signal-to-noise ratio of –20 dB, a 15-element array of opportunity achieves lower average and median localization error (27 m and 12 m, respectively) than a 30-element array with proper λ / 2 element spacing (33 m and 15 m, respectively). We confirm the good accuracy of our approach via emulation results, and through a proof-of-concept lake experiment, where our algorithm applied to a 10-element array of opportunity achieves a 90th-percentile DoA estimation error of 4 ∘ and a 90th-percentile total location error of 5 m when applied to a real 10-element array of opportunity.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3