Abstract
Sediment oxygen demand (SOD) and benthic nutrient fluxes (BNFs) were measured using an in situ benthic chamber at a fish farm (FF), oyster farm (OF), and controls (FF-C and OF-C) to assess the impact of aquaculture activities on organic carbon (OC) and nutrients cycles in coastal waters of Korea. The SOD at FF and OF ranged from 60 ± 2 to 157 ± 3 mmol m−2 d−1 and from 77 ± 14 to 84 ± 16 mmol m−2 d−1, respectively, more than five times those of the control sites. The SOD at farm sites is highly correlated with fish stock and food input, suggesting that excess feed input is an important control factor for OC remineralization. The combined analysis of sediment trap and SOD indicates that most of the deposited OC oxidized in the sediment and/or was laterally transported by the current before being buried in the sediment. The benthic nutrient fluxes at farms ranged from 5.45 to 8.95 mmol N m−2 d−1 for nitrogen and from 0.51 to 1.67 mmol P m−2 d−1 for phosphate, respectively, accounting for 37–270% and 52–804% of the N and P required for primary production in the water column. These results indicate that aquaculture farming may profoundly impact biogeochemical cycles in coastal waters.
Funder
National Institute of Fisheries Science
Korea Institute of Ocean Science and Technology
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Reference65 articles.
1. Fishery and Aquaculture Statistics. Global Aquaculture and Capture Production: 1950–2017 (FishstatJ),2019
2. The future of food from the sea
3. The State of World Fisheries and Aquaculture,2020
4. The State of World Fisheries and Aquaculture,2016
5. Korean Statistical Information Servicehttp://kosis.kr/eng/
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献