Differential Physiological Responses of Small Thalassiosira pseudonana and Large Thalassiosira punctigera to the Shifted-High Light and Nitrogen

Author:

Qin Zhen,Xia Xiaomin,Mai Guangming,Tan Yehui,Li Gang

Abstract

With global warming, the intensity and frequency of extreme episodic weather events such as typhoons are rising in tropical and subtropical regions, disturbing the water column and shifting phytoplankton therein from deep to surface layers, and exposing them to high light as well as nutrients. To explore how phytoplankton respond to such environmental changes, we tracked the growth, cell compositions and physiology of small Thalassiosira pseudonana and large Thalassiosira punctigera from simulated ambient to upward-shifted light and nitrogen (N) conditions. Shifting to high levels of light caused a limited effect on the growth of small T. pseudonana, but reduced that of large T. punctigera by 36%, with supplemental N alleviating the light-caused growth reduction. The upward-shifted light reduced the cellular pigments contents in small T. pseudonana, but not in large T. punctigera. The upward-shifted light reduced the photosynthetic capability (FV/FM) of both species, as well as the light utilization efficiency (α) and maximal relative electron transport rate (rETRmax), but it enhanced their dark reparations. Moreover, the upward-shifted light did not affect the superoxide dismutase (SOD) activity of small T. pseudonana, but it did enhance that of large T. punctigera. In addition, the supplemental N showed a limited effect on cellular pigments and the dark respiration of T. pseudonana, but it reduced that of T. punctigera. Our results showed that the growth responses of Thalassiosira to upward-shifted light and nitrogen vary with species and possibly with cell size, indicating that the field species composition might change after the occurrence of extreme weather events.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3