Characteristics of Breaking Wave Forces on Piles over a Permeable Seabed

Author:

Liu ZhenyuORCID,Guo ZhenORCID,Dou Yuzhe,Zeng Fanyu

Abstract

Most offshore wind turbines are installed in shallow water and exposed to breaking waves. Previous numerical studies focusing on breaking wave forces generally ignored the seabed permeability. In this paper, a numerical model based on Volume-Averaged Reynolds Averaged Navier–Stokes equations (VARANS) is employed to reveal the process of a solitary wave interacting with a rigid pile over a permeable slope. Through applying the Forchheimer saturated drag equation, effects of seabed permeability on fluid motions are simulated. The reliability of the present model is verified by comparisons between experimentally obtained data and the numerical results. Further, 190 cases are simulated and the effects of different parameters on breaking wave forces on the pile are studied systematically. Results indicate that over a permeable seabed, the maximum breaking wave forces can occur not only when waves break just before the pile, but also when a “secondary wave wall” slams against the pile, after wave breaking. With the initial wave height increasing, breaking wave forces will increase, but the growth can decrease as the slope angle and permeability increase. For inclined piles around the wave breaking point, the maximum breaking wave force usually occurs with an inclination angle of α = −22.5° or 0°.

Funder

State Key Laboratory of Hy-draulic Engineering Simulation and Safety

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3