Experimental Study on the Morphology of Snow Crystal Particles and Its Influence on Compacted Snow Hardness

Author:

Hu Shengbo1ORCID,Li Zhijun1,Lu Peng1,Wang Qingkai1,Wei Jie1,Zhao Qiuming1

Affiliation:

1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

In their natural state, snow crystals are influenced by the atmosphere during formation and multiple factors after landing, resulting in varying particle sizes and unstable particle morphologies that are challenging to quantify. The current research mainly focuses on the relationship between the porosity of compacted snow samples or qualitatively describes snow crystals and their macroscopic physical properties, ignoring that the significant differences in the morphology of snow crystals also affect their physical properties. To quantitatively evaluate the morphology of snow crystals, we employed optical microscopy to obtain digital images of snow crystals in Harbin, utilizing the Sobel and Otsu algorithms to determine the equivalent particle size and fractal dimension of individual snow particles. In addition, the hardness of snow with a density of 0.4 g/cm3 was measured through a penetration test, with an analysis of its correlation relative to particle size and fractal dimension. The results indicated the fractal dimension as an effective parameter for characterizing particle shape, which decreased rapidly over time and then fluctuated within the range of 1.10 to 1.15. During the initial period, natural snow crystals broke down rapidly, leading to an increase in the percentage of natural snow crystals with an equivalent particle size of 0.2–0.4 mm up to 51.86%. After three days, the sintering effect between snow crystals was enhanced, resulting in an even distribution of the equivalent particle size. Finally, multiple linear regression analysis showed a positive correlation between compacted snow hardness and fractal dimension, with a negative correlation between compacted snow hardness and equivalent particle size. These findings offer valuable technical support and data reference for exploring the relationship between snow’s mechanical properties and its microscopic particle shape.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference43 articles.

1. Ice and snow runway engineering in the Antarctica: Current status and prospect;Sun;Strateg. Study CAE,2021

2. The age of cryopolitics is coming;Du;Bull. Chin. Acad. Sci.,2020

3. Cryosphere engineering science supporting interactivity infrastructures construction;Wu;Bull. Chin. Acad. Sci.,2020

4. Snow grain-size estimation using Hyperion imagery in a typical area of the Heihe River Basin, China;Zhao;Remote Sens.,2013

5. Phase-field modeling of dry snow metamorphism;Kaempfer;Phys. Rev. E,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3