Case Study of Contaminant Transport Using Lagrangian Particle Tracking Model in a Macro-Tidal Estuary

Author:

Gu Bon-Ho1,Woo Seung-Buhm2ORCID,Kwon Jae-Il1,Park Sung-Hwan1ORCID,Kim Nam-Hoon1

Affiliation:

1. Coastal Disaster & Safety Research Department, Sea Power Enhancement Research Division, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea

2. Department of Ocean Science, Inha University, Incheon 22212, Republic of Korea

Abstract

This study presents a comprehensive analysis of contaminant transport in estuarine environments, focusing on the impact of tidal creeks and flats. The research employs advanced hydrodynamic models with irregular grid systems and conducts a detailed residual current analysis to explore how these physical features influence the movement and dispersion of contaminants. The methodology involves simulating residual currents and Lagrangian particle trajectories in both ‘Creek’ and ‘No Creek’ cases, under varying tidal conditions. The results indicate that tidal creeks significantly affect particle retention and transport, with notable differences observed in the dispersion patterns between the two scenarios. The ‘Creek’ case demonstrates enhanced material retention along the creek pathways, while the ‘No Creek’ case shows broader dispersion, potentially leading to increased sedimentation in open sea areas. The discussion highlights the implications of these findings for sediment dynamics, contaminant transport, and estuarine ecology, emphasizing the role of tidal creeks in modulating flow and material transport. The research underlines the necessity of incorporating detailed environmental features in estuarine models for accurate contaminant transport prediction and effective estuarine management. This study contributes to a deeper understanding of estuarine hydrodynamics and offers valuable insights for environmental policy and management in coastal regions.

Funder

Ministry of Oceans and Fisheries

KIOST

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3